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• "Lies, damned lies, and statistics" 

Statistics - Lying without sinning? 

1954 

Statistics - Lying without sinning? 
In North Dakota, 54 Million Beer Bottles by the side of the Road 
April 01 2002 
 
South Dakota's Pierre Capital Journal reports (Mar. 1) that "an average of 
650 beer cans and bottles are tossed per mile of road annually." The 
statistic is attributed to Dennis W. Brezina, an activist against drunk-
driving.  
 
But how did he come up with his data? According to the Journal, Brezina 
traveled "highways across the nation to determine whether the problem 
he perceived was widespread. He made two trips to South Dakota, one in 
1998 and another in 2000." He counted "cans and bottles in ditches in 
May of both years" and claimed to have found an average of "one beer 
can or bottle every 16 feet when walking randomly selected stretches of 
ditch."  
 
But the math appears a little blurry. The web site of the South Dakota 
Department of Transportation claims that the state "has 83,472 miles of 
highways, roads and streets." Assuming Brezina's estimate is correct, 
South Dakotans appear to be world-class litterbugs, tossing aside 
approximately 54,256,800 bottles or cans every year. According to the 
Census Bureau there are 754,844 people in South Dakota. So, 
according to Brezina, the average resident throws at least 71 beer 
bottles or cans on the side of the road every year.  
 

 

For more  

Check out  

www.STATS.org 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=4qSc96pvR7OSjM&tbnid=uFtFq-qGiS-fWM:&ved=0CAUQjRw&url=http%3A%2F%2Fpc.blogspot.com%2F2007_03_25_archive.html&ei=_IHlUsHJJZDKsQTsvYJg&bvm=bv.59930103,d.eW0&psig=AFQjCNHcGqZ1e7Q1nGh2j67YbTE0a2Q8Yw&ust=1390859127492899
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=4qSc96pvR7OSjM&tbnid=uFtFq-qGiS-fWM:&ved=0CAUQjRw&url=http%3A%2F%2Fpc.blogspot.com%2F2007_03_25_archive.html&ei=_IHlUsHJJZDKsQTsvYJg&bvm=bv.59930103,d.eW0&psig=AFQjCNHcGqZ1e7Q1nGh2j67YbTE0a2Q8Yw&ust=1390859127492899
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• Statistics:  Set of mathematical tools used to describe 
and make judgments about data 

• Type of statistics we will talk about in this class has 
important assumption associated with it:  

  

Experimental variation in the population from which samples 
are drawn has a normal (Gaussian, bell-shaped) distribution. 

   

Statistics for Quantitative Analysis 

Normal distribution 

• Infinite members of group:  

population 

• Characterize population by taking 
samples 

• The larger the number of samples, 
the closer the distribution becomes to 
normal 

• Equation of normal distribution:   
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Normal distribution 

• Estimate of mean value 
of population =  

• Estimate of mean value 
of samples =  
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Normal distribution 

• Degree of scatter (measure of central tendency) 
of population is quantified by calculating the 
standard deviation 
 

• Std. dev. of population =  
 

• Std. dev. of sample = s 

 

 

 

 

 

• Characterize sample by calculating 
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Standard deviation and the  
normal distribution 

• Standard deviation defines 
the shape of the normal 
distribution (particularly 
width) 

 

• Larger std. dev. more 
scatter about the mean, 
worse precision. 

 

• Smaller std. dev. means 
less scatter about the 
mean, better precision. 

Standard deviation and the  
normal distribution 

• There is a well-defined relationship between the std. dev. of a population 
and the normal distribution of the population. 

 

• (May also consider these percentages of area under the curve) 

 

 Total % of the data covered by distribution  

68 % 

95 % 
99.7 % 

Amount of Data 

Standard deviations 
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Example of mean and standard 
deviation calculation 

Consider Cu data:  5.23, 5.79, 6.21, 5.88, 6.02 nM 
 

    = 5.826 nM  5.82 nM 
 

s = 0.368 nM  0.36 nM 
 

Answer: 5.82 ± 0.36 nM or 5.8 ± 0.4 nM 
 

Learn how to use the statistical functions on your 
calculator.  Do this example by longhand calculation 
once, and also by calculator to verify that you’ll get 
exactly the same answer.  Then use your calculator for 
all future calculations. 

x

Learn to use your calculator’s statistical functions to calculate 

mean and standard deviation. You’ll save yourself a lot of 
work. 

 
http://www.willamette.edu/~mjaneba/help/TI-85-stats.htm 

http://www2.ohlone.edu/people2/joconnell/ti/ 
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Relative standard deviation (rsd)  
or coefficient of variation (CV) 

rsd or CV =  

 

From previous example, 

 

rsd = (0.36 nM/5.82 nM) 100 = 6.1% or 6% 

100
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Standard error 

• Tells us that standard deviation of set of samples should decrease 
if we take more measurements 

 

• Standard error =  
 

 

• Take twice as many measurements, s decreases by       

 

• Take 4x as many measurements, s decreases by 

 

•  There are several quantitative ways to determine the sample size 
required to achieve a desired precision for various statistical 
applications.  Can consult statistics textbooks for further 
information; e.g. J.H. Zar, Biostatistical Analysis 
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Variance 

Used in many other statistical calculations and tests 

 

Variance = s2 

 

From previous example, s = 0.36 

s2 = (0.36)
2 = 0. 129 (not rounded because it is usually 

used in further calculations) 

Average deviation 
• Another way to express 

degree of scatter or 
uncertainty in data.  Not as 
statistically meaningful as 
standard deviation, but 
useful for small samples. 
 

Using previous data: 
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Relative average deviation (RAD) 

 

Using previous data,  

 

RAD = (0. 25/5.82) 100 = 4.2 or 4% 
 

RAD = (0. 25/5.82) 1000 = 42 ppt  

 4.2 x 101 or 4 x 101 ppt (0/00) 
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Some useful statistical tests 

• To characterize or make judgments about data 

• Tests that use the Student’s t distribution 

– Confidence intervals 

– Comparing a measured result with a “known” value 

– Comparing replicate measurements (comparison of 
means of two sets of data) 
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From D.C. Harris (2003) Quantitative Chemical Analysis, 6th Ed. 

Confidence intervals 

• Quantifies how far the true mean () lies from the 
measured mean,  .  Uses the mean and standard 
deviation of the sample. 

 
 

 

 

where t is from the t-table and n = number of 
measurements.   

Degrees of freedom (df) = n - 1 for the CI. 
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Example of calculating a  
confidence interval 

Consider measurement of dissolved Ti 
in a standard seawater (NASS-3): 

Data: 1.34, 1.15, 1.28, 1.18, 1.33, 
1.65, 1.48 nM 

DF = n – 1 = 7 – 1 = 6 

    = 1.34 nM or 1.3 nM  

s = 0.17 or 0.2 nM 

95% confidence interval  

t(df=6,95%) = 2.447 

CI95 = 1.3 ± 0.16 or 1.3 ± 0.2 nM 

50% confidence interval 

t(df=6,50%) = 0.718 

CI50 = 1.3 ± 0.05 nM 

 

x

n

ts
x 

Interpreting the confidence interval 

• For a 95% CI,  there is a 95% probability that the true 
mean () lies between the range 1.3 ± 0.2 nM, or 
between 1.1 and 1.5 nM 

 
• For a 50% CI, there is a 50% probability that the true 

mean lies between the range 1.3 ± 0.05 nM, or between 
1.25 and 1.35 nM 

 
• Note that CI will decrease as n is increased 

 
• Useful for characterizing data that are regularly obtained; 

e.g., quality assurance, quality control 
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Nitrate Concentrations (g/mL) 

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

0.51 0.51 0.51 0.5 0.51 0.49 0.52 0.53 0.5 0.47

0.51 0.52 0.53 0.48 0.49 0.5 0.52 0.49 0.49 0.5

0.49 0.48 0.46 0.49 0.49 0.48 0.49 0.49 0.51 0.47

0.51 0.51 0.51 0.48 0.5 0.47 0.5 0.51 0.49 0.48

0.51 0.5 0.5 0.53 0.52 0.52 0.5 0.5 0.51 0.51

0.506 0.504 0.502 0.496 0.502 0.492 0.506 0.504 0.5 0.486 mean

average 0.4998

stdev 0.01647
mg/mL frequency

0.53 3

0.52 5

0.51 13

0.5 10

0.49 10

0.48 5

0.47 3

0.46 1

Let’s Graph the Data! 
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Confidence Interval Exercise 

Calculate the 95, 98 and 99 % confidence intervals 
 
For the nitrate concentration data 

95 %  

98 % 

99 % 

n

s
tstx m  

0.500 ± 0.005  

0.500 ± 0.006  

0.500 ± 0.006  

50 % 0.500 ± 0.002  

0.500 ± 0.005  

0.500± 0.006  0.500 ± 0.006  

0.500 ± 0.002  
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Testing a Hypothesis (Significance Tests) 

Carry out measurements on an accurately known standard. 

Experimental value is different from the true value. 

Is the difference due to a systematic error (bias) in the method - or simply to random error? 

Assume that there is no bias 

(NULL HYPOTHESIS), 

and calculate the probability 

that the experimental error 

is due to random errors. 

Figure shows (A) the curve for 

the true value  (A = t) and 

(B) the experimental curve (B)  

 
 Comparing a measured result 

with a “known” value 

• “Known” value would typically be a certified value 
from a standard reference material (SRM) 

• Another application of the t statistic 
 
 
 
 
 

Will compare tcalc to tabulated value of t at appropriate 
df and CL. 

 
df = n -1 for this test 

n
s
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tcalc
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Comparing a measured result 
with a “known” value--example 

Dissolved Fe analysis verified using NASS-3 seawater SRM  

Certified value = 5.85 nM   

Experimental results: 5.76 ± 0.17 nM (n = 10) 
 
 

 
 

 

(Keep 3 decimal places for comparison to table.) 
 

Compare to ttable; df = 10 - 1 = 9, 95% CL 
 

ttable(df=9,95% CL) = 2.262 
 
If |tcalc| < ttable, results are not significantly different at the 95% CL. 
 

If |tcalc|  ttable, results are significantly different at the 95% CL. 
 

For this example, tcalc < ttest, so experimental results are not significantly  

different at the 95% CL.  THE NULL HYPOTHESIS IS MAINTAINED and no BIAS 
at the 95 % confidence level. 
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Comparing replicate measurements or 
comparing means of two sets of data 

• Another application of the t statistic 

• Example:  Given the same sample analyzed by two 
different methods, do the two methods give the “same” 
result? 

 

 

 

 

 

Will compare tcalc to tabulated value of t at appropriate df 
and CL. 

df = n1 + n2 – 2 for this test 
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Comparing replicate measurements or 
comparing means of two sets of data—

example 

Method 1: Atomic absorption 
spectroscopy 

Data:  3.91, 4.02, 3.86, 3.99 mg/g 

 

    = 3.945 mg/g  
 

    = 0.073 mg/g 

 

     = 4 

 

 

Method 2: Spectrophotometry 
 

Data:  3.52, 3.77, 3.49, 3.59 mg/g 

 

    = 3.59 mg/g  
 

    = 0.12 mg/g 

 

    = 4 

1x

Determination of nickel in sewage sludge 
using two different methods 

2x

1s 2s

1n 2n

Ewww! 

Comparing replicate measurements or 
comparing means of two sets of data—example 
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Note:  Keep 3 decimal places to compare to ttable. 
 

Compare to ttable at df = 4 + 4 – 2 = 6  and 95% CL. 
ttable(df=6,95% CL) = 2.447 
 
If |tcalc|  ttable, results are not significantly different at the 95%. CL. 
 

If |tcalc|  ttable, results are significantly different at the 95% CL. 
  

Since |tcalc| (5.056)  ttable (2.447), results from the two methods are 
significantly different at the 95% CL. 
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Comparing replicate measurements or 
comparing means of two sets of data 

 
Wait a minute!  There is an important assumption 
associated with this t-test: 
 
It is assumed that the standard deviations (i.e., the 
precision) of the two sets of data being compared are not 
significantly different. 
 
• How do you test to see if the two std. devs. are 
different? 
 

• How do you compare two sets of data whose std. devs. 
are significantly different? 
 

 

t-tests and the Law 
  
Clearly, the meanings of 1.083 ± 0.007 and 1.0 ± 0.4 are very different.  As a 
person who will either derive or use analytical results, you should be aware of 
this warning published in a report entitled “Principles of Environmental Analysis”: 

  
  
Analytical chemists must always emphasize to the public that the single most 
important characteristic of any result obtained from one or more analytical 
measurements is an adequate statement of its uncertainty interval.  Lawyers 
usually attempt to dispense with uncertainty and try to obtain unequivocal 
statements: therefore, an uncertainty interval must be defined in cases 
involving litigation and or enforcement proceedings.  Otherwise, a value of 
1.001 without a specified uncertainty, for example may be views as legally 
exceeding a permissible level of 1. 
  
L. K. Keith, W. Crummett, J. Deegan Jr., R. A. Libby, J. K. Taylor, and G. Wentler, 
Analytical Chemistry, 55, 2210 (1983).  
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F-test to compare standard deviations 

• Used to determine if std. devs. are significantly 
different before application of t-test to compare 
replicate measurements or compare means of two 
sets of data 

 
• Also used as a simple general test to compare the 

precision (as measured by the std. devs.) of two sets 
of data 

 

• Uses F distribution 

F-test to compare standard deviations 

Will compute Fcalc and compare to Ftable. 

 

     

 

 

DF = n1 - 1 and n2 - 1 for this test. 

 

Choose confidence level (95% is a typical CL). 
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From D.C. Harris (2003) Quantitative Chemical Analysis, 6th Ed. 

F-test to compare standard deviations 

From previous example: 
Let s1 = 0.12 and s2 = 0.073 
 

 
 
 
Note:  Keep 2 or 3 decimal places to compare with Ftable. 
 

Compare Fcalc to Ftable at df = (n1 -1, n2 -1) = 3,3 and 95% CL. 
 

If Fcalc  Ftable, std. devs. are not significantly different at 95% CL. 
 

If Fcalc  Ftable, std. devs. are significantly different at 95% CL. 
 

Ftable(df=3,3;95% CL) = 9.28 
 

Since Fcalc (2.70) < Ftable (9.28), std. devs. of the two sets of data 
are not significantly different at the 95% CL.  (Precisions are 
similar.) 
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Comparing replicate measurements or 
comparing means of two sets of data- 

revisited 

The use of the t-test for comparing means was 
justified for the previous example because we 
showed that standard deviations of the two sets of 
data were not significantly different. 

 

If the F-test shows that std. devs. of two sets of data 
are significantly different and you need to compare 
the means, use a different version of the t-test  

Comparing replicate measurements or 
comparing means from two sets of data when 

std. devs. are significantly different 
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Flowchart for comparing means of two 
sets of data or replicate measurements 

Use F-test to see if std. 
devs. of the 2 sets of 
data are significantly 

different or not 

Std. devs. are 
significantly different 

Std. devs. are not 
significantly different 

Use the 2nd version 
of the t-test () 

Use the 1st version of the 
t-test (see previous, fully 
worked-out example) 

One last comment on the F-test 

Note that the F-test can be used to simply test whether 
or not two sets of data have statistically similar 
precisions or not.   

 

Can use to answer a question such as:  Do method one 
and method two provide similar precisions for the 
analysis of the same analyte? 
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Outliers Disrupt the Mean 
January 01 1999 
 
In 1984, according to Larry Gonick and Woollcott 
Smith, the University of Virginia announced that 
the mean starting salary of its graduates from the 
Department of Rhetoric and Communications was 
a very hefty $55,000 per year. But before you 
abandon your computer science training for 
speech classes, you should know that the 
graduating class contained a significant "outlier," 
or extreme data point not typical of the rest of 
the data set - Ralph Sampson, future NBA All-
Star, who majored in speech. It would have been 
better to learn the median salary, the data point 
in the middle of the set.  
 

Statistics in the News 

Evaluating questionable data points 
using the Q-test 

• Need a way to test questionable data points (outliers) in an 
unbiased way. 

• Q-test is a common method to do this. 

• Requires 4 or more data points to apply. 
 
Calculate Qcalc and compare to Qtable 
 

Qcalc = gap/range 
 
Gap = (difference between questionable data pt. and its 

nearest neighbor) 
 
Range = (largest data point – smallest data point) 
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Evaluating questionable data points 
using the Q-test--example 

Consider set of data; Cu values in sewage sample: 

9.52, 10.7, 13.1, 9.71, 10.3, 9.99 mg/L 
 

Arrange data in increasing or decreasing order: 

9.52, 9.71, 9.99, 10.3, 10.7, 13.1 
 

The questionable data point (outlier) is 13.1 
 

Calculate 
 

Compare Qcalc to Qtable for n observations and desired CL (90% or 
95% is typical).  It is desirable to keep 2-3 decimal places in 
Qcalc so judgment from table can be made. 

 

Qtable (n=6,90% CL) = 0.56  

670.0
)52.91.13(

)7.101.13(







range

gap
Qcalc

From G.D. Christian (1994) Analytical Chemistry, 5th Ed. 
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Evaluating questionable data points 
using the Q-test--example 

If Qcalc < Qtable, do not reject questionable data point at stated CL. 

 

If Qcalc  Qtable, reject questionable data point at stated CL. 

 

From previous example, 

Qcalc (0.670) > Qtable (0.56), so reject data point at 90% CL. 

 

Subsequent calculations (e.g., mean and standard deviation) 
should then exclude the rejected point. 

 

Mean and std. dev. of remaining data:  10.04  0.47 mg/L 

 

 

Q or G outlier test? 

s

xvaluelequestionab
G

calc




_

range

gap
Q

calc


Q (90 % confidence) Number of Observations 

0.76 4 

0.64 5 

0.56 6 

0.51 7 

0.47 8 

0.44 9 

0.41 10 

G (95 % confidence) Number of Observations 

1.463 4 

1.672 5 

1.822 6 

1.938 7 

2.032 8 

2.11 9 

2.176 10 

2.234 11 

2.285 12 

2.409 15 

2.557 20 

reject if Gcalc > G table 

reject if Qcalc > Q table 



24 

Rejection of outlier recommended if  Qcalc> Qtable for the desired confidence level. 

Note:1. The higher the confidence level, the less likely is  

 rejection to be recommended. 

2.    Rejection of outliers can have a marked effect on mean  

       and standard deviation, esp. when there are only a few    

       data points. Always try to obtain more data. 

    

 

No. of observations  90% 95% 99%   confidencelevel 

 

 3  0.941 0.970 0.994 

 4  0.765 0.829 0.926 

 5  0.642 0.710 0.821 

 6  0.560 0.625 0.740 

 7  0.507 0.568 0.680 

 8  0.468 0.526 0.634 

 9  0.437 0.493 0.598 

 10  0.412 0.466 0.568 

The following values were obtained for  

the concentration of nitrite ions in a sample  

of river water: 0.403, 0.410, 0.401, 0.380 mg/l. 

Should the last reading be rejected? 

7.0)380.0410.0(401.0380.0 calcQ

But Qtable = 0.829 (at 95% level) for 4 values 

Therefore, Qcalc < Qtable, and we cannot reject the suspect value. 

Suppose 3 further measurements taken, giving total values of: 

0.403, 0.410, 0.401, 0.380, 0.400, 0.413, 0.411 mg/l.  Should 

0.380 still be retained? 

606.0)380.0413.0(400.0380.0 calcQ

But Qtable = 0.568 (at 95% level) for 7 values 

Therefore, Qcalc > Qtable, and rejection of 0.380 is recommended. 

But note that 5 times in 100 it will be wrong to reject this suspect value! 

Also note that if 0.380 is retained, s = 0.011 mg/l, but if it is rejected, 

s = 0.0056 mg/l, i.e. precision appears to be twice as good, just by  

rejecting one value. 

Q Test for Rejection  

of Outliers 


